The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
由于成像装置的约束和操作时间的高成本,电脑断层扫描(CT)扫描通常以低帧内分辨率获取。改善切片内分辨率对人类专家和计算机辅助系统的疾病诊断有益。为此,本文建立了一种新型医疗切片合成,以增加切片分辨率。考虑到临床实践中始终缺乏地面真理中间医学切片,我们介绍了以自我监督的学习方式实现这项任务的增量跨视图相互蒸馏策略。具体而言,我们从三种不同的视图模型在这种情况下,从不同视图中学到的模型可以蒸馏有价值的知识来引导彼此的学习过程。我们可以重复此过程以使模型通过增加切片分辨率来综合中间切片数据。为了证明所提出的方法的有效性,我们对大型CT数据集进行了全面的实验。定量和定性比较结果表明,我们的方法通过清晰的边缘来占据最先进的算法。
translated by 谷歌翻译
用于LIDAR点云的快速准确的Panoptic分割系统对于自主驾驶车辆来了解周围物体和场景至关重要。现有方法通常依赖于提案或聚类到分段前景实例。结果,他们努力实现实时性能。在本文中,我们提出了一种用于LIDAR点云的新型实时端到端Panoptic分段网络,称为CPSEG。特别地,CPSEG包括共享编码器,双解码器,任务感知注意模块(TAM)和无簇实例分段头。 TAM旨在强制执行这两个解码器以学习用于语义和实例嵌入的丰富的任务感知功能。此外,CPSEG包含一个新的无簇实例分割头,以根据学习嵌入的嵌入动态占据前景点。然后,它通过找到具有成对嵌入比较的连接的柱子来获取实例标签。因此,将传统的基于提议的或基于聚类的实例分段转换为对成对嵌入比较矩阵的二进制分段问题。为了帮助网络回归实例嵌入,提出了一种快速和确定的深度完成算法,以实时计算每个点云的表面法线。该方法在两个大型自主驾驶数据集中基准测试,即Semantickitti和Nuscenes。值得注意的是,广泛的实验结果表明,CPSEG在两个数据集的实时方法中实现了最先进的结果。
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
Deep learning-based 3D object detectors have made significant progress in recent years and have been deployed in a wide range of applications. It is crucial to understand the robustness of detectors against adversarial attacks when employing detectors in security-critical applications. In this paper, we make the first attempt to conduct a thorough evaluation and analysis of the robustness of 3D detectors under adversarial attacks. Specifically, we first extend three kinds of adversarial attacks to the 3D object detection task to benchmark the robustness of state-of-the-art 3D object detectors against attacks on KITTI and Waymo datasets, subsequently followed by the analysis of the relationship between robustness and properties of detectors. Then, we explore the transferability of cross-model, cross-task, and cross-data attacks. We finally conduct comprehensive experiments of defense for 3D detectors, demonstrating that simple transformations like flipping are of little help in improving robustness when the strategy of transformation imposed on input point cloud data is exposed to attackers. Our findings will facilitate investigations in understanding and defending the adversarial attacks against 3D object detectors to advance this field.
translated by 谷歌翻译
When a large language model (LLM) performs complex reasoning by chain of thought (CoT), it can be highly sensitive to individual mistakes. We have had to train verifiers to address this issue. As we all know, after human inferring a conclusion, they often check it by re-verifying it, which can avoid some mistakes. We propose a new method called self-verification that uses the conclusion of the CoT as a condition to build a new sample and asks the LLM to re-predict the original conditions which be masked. We calculate an explainable verification score based on the accuracy. This method can improve the accuracy of multiple arithmetics and logical reasoning datasets when using few-shot learning. we have demonstrated that LLMs can conduct explainable self-verification of their own conclusions and achieve competitive reasoning performance. Extensive experimentals have demonstrated that our method can help multiple large language models with self-verification can avoid interference from incorrect CoT. Code is available at \url{https://github.com/WENGSYX/Self-Verification}
translated by 谷歌翻译
Image token removal is an efficient augmentation strategy for reducing the cost of computing image features. However, this efficient augmentation strategy has been found to adversely affect the accuracy of CLIP-based training. We hypothesize that removing a large portion of image tokens may improperly discard the semantic content associated with a given text description, thus constituting an incorrect pairing target in CLIP training. To address this issue, we propose an attentive token removal approach for CLIP training, which retains tokens with a high semantic correlation to the text description. The correlation scores are computed in an online fashion using the EMA version of the visual encoder. Our experiments show that the proposed attentive masking approach performs better than the previous method of random token removal for CLIP training. The approach also makes it efficient to apply multiple augmentation views to the image, as well as introducing instance contrastive learning tasks between these views into the CLIP framework. Compared to other CLIP improvements that combine different pre-training targets such as SLIP and MaskCLIP, our method is not only more effective, but also much more efficient. Specifically, using ViT-B and YFCC-15M dataset, our approach achieves $43.9\%$ top-1 accuracy on ImageNet-1K zero-shot classification, as well as $62.7/42.1$ and $38.0/23.2$ I2T/T2I retrieval accuracy on Flickr30K and MS COCO, which are $+1.1\%$, $+5.5/+0.9$, and $+4.4/+1.3$ higher than the SLIP method, while being $2.30\times$ faster. An efficient version of our approach running $1.16\times$ faster than the plain CLIP model achieves significant gains of $+5.3\%$, $+11.3/+8.0$, and $+9.5/+4.9$ on these benchmarks.
translated by 谷歌翻译
As the deep learning rapidly promote, the artificial texts created by generative models are commonly used in news and social media. However, such models can be abused to generate product reviews, fake news, and even fake political content. The paper proposes a solution for the Russian Artificial Text Detection in the Dialogue shared task 2022 (RuATD 2022) to distinguish which model within the list is used to generate this text. We introduce the DeBERTa pre-trained language model with multiple training strategies for this shared task. Extensive experiments conducted on the RuATD dataset validate the effectiveness of our proposed method. Moreover, our submission ranked second place in the evaluation phase for RuATD 2022 (Multi-Class).
translated by 谷歌翻译
Recent pre-trained language models have shown promising capabilities in generating fluent and realistic natural language text. However, generating multi-sentence text with global content planning has been a long-existing research question. Current approaches for controlled text generation can hardly address this issue, as they usually condition on single known control attributes. In this study, we propose a low-cost yet effective framework which explicitly models the global content plan of the generated text. Specifically, it optimizes the joint distribution of the natural language sequence and the global content plan in a plug-and-play manner. We conduct extensive experiments on the well-established Recipe1M+ benchmark. Both automatic and human evaluations verify that our model achieves the state-of-the-art performance on the task of recipe generation
translated by 谷歌翻译
In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses.
translated by 谷歌翻译